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1 Three balls

Let the ball A is given an initial velocity v along the axis Y,
which is perpendicular to the rod. The total momentum of
the system conserves, therefore the center-of-mass (CM) of
the system moves with a constant velocity:
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along Y. In what follows, we will work in the CM frame of
reference, which is an inertial system of reference. Therefore, in
the CM frame the laws of conservation of energy, momentum,
and the angular momentum hold true. The initial velocities
of the three balls along Y are:
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Correspondingly, the total kinetic energy of the balls is:
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and the total angular momentum with respect to the CM
equals: )
v v
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In any moment the three balls form an isosceles triangle
with an angle 2¢ at the top vertex. The distance between A
and C is minimal when either ¢ = 0, or ¢ = 0. For ¢ = 0,
however, the laws of conservation are not consistent with the
rigidity of the rods. Therefore, at the minimal distance ¢ = 0,
and in this particular instance the system behaves as a rigid
body whose moment of inertia with respect to the CM can be
obtained through:
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On the other hand, the moment of inertia I could be found

independently from geometric considerations. Although, I

could be found using the distances from the balls to the CM

(medicentre of a triangle), it is more convenient to use this

relatively unknown formula for the moment of inertia of a
collection of point masses with respect to CM:
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In our case:
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From (1) and (2), we obtain the minimal distance:
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2 Solenoid

Magnetic field gives rise to magnetization of water molecules,
i.e. each of the molecules becomes a magnetic dipole. Inhomo-
geneous magnetic field exerts a force to a magnetic dipole.

Water molecules being diamagnetic are pushed away from the
region of stronger magnetic field. Water reaches a state with
mechanical equilibrium where the magnetic force is balanced
by a force due to pressure gradient. Hence, in mechanical
equilibrium, regions with stronger magnetic field correspond
to smaller pressures. When the current in the solenoid is
increased, the pressure differences grow, and at a certain
moment, a region will appear where the pressure is smaller
than the saturation pressure of the water vapour. This is the
moment when water starts boiling.

To begin with, let us discuss possible reasonable approxima-
tions. First, we can neglect the water column pressure which is
only 2 to 4 percents of the atmospheric pressure. Second, the
saturation pressure of water vapour under normal conditions
is also much smaller than the atmospheric one and therefore
can be neglected. Thus we can say that boiling starts when
the pressure drop due to magnetic field becomes equal to py.

So, we need to relate the pressure difference caused by the
magnetic field to the magnetic field strength. Notice that if a
region with magnetic field B is filled with water, the magnetic
field energy density is B2/(2pu,110); meanwhile, if there is no
water, the energy density is B?/(2u0). So, we can ascribe the
energy density difference

Aw = (i7" = 1)B?/(2p0)
to the interaction of water and magnetic field. Next, consider
the following thought experiment. We push away a small
volume V of water from the neighbourhood of a point P in the
water where the magnetic field strength is B; the displaced
water fills in a narrow layer at the top of the water surface of
equal volume. Assuming that the magnetic field is negligibly
small at the top, by comparing the initial and final states,
we conclude that the total interaction energy is reduced by
V(ut —1)B?/(2p0). When pushing away water from P we
perform mechanical work pV', where p is the pressure at point
P. At the upper surface of the water, the moving interface
performs mechanical work pgV so that the net mechanical
work performed by water during this process is V(pg —p). Due
to energy conservation law, V (u, 1 — 1)B?/(2u0) = V(po — p)
so that
po =p+ (" —1)B?/(2u0).

Note that the way how we derived this relationship is com-
pletely analogous to how the Bernoulli law is derived, and
in fact, the obtained equality can be interpreted as a mod-
ified Bernoulli law for zero speed where the volume dens-
ity of potential energy in gravity field pgh is replaced with
(ut — 1)B%/(2u0) — the energy density of magnetic in-
teraction. This equality can be simplified by noting that
prt =1 = —x/pr = —x so that

po —p = —xB?/(210).

As discussed above, the boiling condition is p ~ 0, hence

B = \/—2uopo/x.

Finally, we apply the formula for magnetic field strength inside
a long solenoid B = oI N// to find
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3 Staircase

A Since n = —y/h = (2/\)*?, x(n) = n?/3X\. The distance
between the steps is
dz(n) 2

dp =2(n+1) —xz(n) ~ I = g)\n_l/s =n 3. 30 pm.

B Equilibrium energy value, being minimum, must be stable
against small perturbations of the crystal shape. Allowed are
perturbations which conserve the total volume of the crystal.
In other words a small horizontal displacement of one step
must be accompanied by an equal and opposite displacement
of another step.

The energy change €, () associated with a small horizontal
displacement ¢ of the n-th step is

en(6) = o (dn +0)" = i + (dus1 — 0)" = diyy ) =
v (7 —ditY) 6.

In order for €,(d) + €, (—9) to be zero for arbitrary n and m
it is necessary to require that the factor in the parentheses
does not depend on n:

dvt — d;’lﬂ = const.

1/3

Substituting d,, o< n=1/3, we get!:

n(=0/3 (4 1))/ o L2V pamnysn g
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The interaction energy corresponds to that of two dipoles in
2D:
1

ITrivial solutions v = 0 and v = 1 imply that the total energy within
given constraints does not depend on the shape of the crystal.



